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ABSTRACT 

This document discusses several aspects of the asymptotic Sommerfeld solutions for a diffract- 

ing half-plane. The behavior of the E-plane and H-plane solutions for general (two angle-parameter) 

incidence is explored in the remote shadow, reflection, and illumination regions using the time- 

average Poynting vector. Field points are also taken on the shadow and reflection boundaries to 
characterize the behavior of the asymptotic solutions in these special regions. Geometric-optics 

field transition between adjacent sectors via the arithmetic mean is verified. Numerous sketches are 
included to assist visualization of the content of the three-dimensional Sommerfeld solutions and 

clarify some of the notation and conventions introduced in "hi 84996 of March 1983. The closed- 

form field equations discussed in this document provide an analytical basis for comparison with the 

numerical results of a computer program predicated on the less-restrictive Fresnel-integral approach. 
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GLOSSARY OF NOTATION 

incident electric and magnetic fields (plane-wave) 

azimuthal and polar incidence angles (plane-wave) 

freespace wave number 

local cylindrical coordinates for fences or half-planes 

arguments of the Fresnel integral 

generic parameter equal to u, v, p, or q 

incident and reflected rays 

surface normal (unit vector) 

time-average Poynting vector 

real part operator 

differential area 

slant height of a cone 

unit designation 

cone, cross-term 

wavefront 

deviation from a circular wavefront 

wavelength 

radius 

stationary distance 

stationarity criteria 
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THREE-DIMENSIONAL DIFFRACTION O F  A PLANE WAVE BY A HALF-PLANE 

INTRODUCTION 

This document is a companion paper to  TM-84996 of March, I983 entitled “A Radio-Frequency 

Analysis of Paraboloidal Antennas Located Near Diffracting Fences.” The objective is to explore 

the asymptotic Sommerfeld solutions presented and derived in the preceding technical memoran- 

dum, and to discover in some detail what information they contain. It has been found that the 

time average Poynting vector is useful in this effort since it is composed of twelve field quantitites: 

three electric field magnitudes together with their associated phase terms, and the magnetic coun- 

terparts t o  these expressions. It is not necessary to multiply the lengthly expressions of the Som- 

merfeld solution to  obtain the general form of the Poynting vector. Instead, strategic observation 

points may be selected to  obtain simple expressions for fields and power vectors locally. The bene- 

fits of this approach include a deeper appreciation of the field equations, a facility for extracting 

information relating to divergence, wavefront, direction of power-flow, etc., and a useful physical 

picture of diffraction mechanics of the half-plane illuminated by a plane wave. 

A review of the previous TM points out the fact that the overall effort is concerned primarily 

with diffracted fields at large distances from the half-plane. Computation of the complicated field 

behavior in the vicinity of the half-plane, such as is illustrated in Ref. 1 ,  p. 576, is not of immediate 

interest, but will incidentally become available upon the completion of a computer program in 

which the Fresnel-integral approach is implemented. In fact, only the magnetic fields scattered by 

the half-plane are essential t o  the calculation of a perturbation of the sheet-current for a parabo- 

loidal antenna of interest. The present document may therefore be regarded as a self-contained 

paper pertaining to  Sommerfeld’s half-plane analysis that also augments TM-84996. 

Upon completion of Th4-84996 several questions arose concerning coordinate conventions, iden- 

tification of diffraction regions, singularities of the Sommerfeld solutions, and the divergence and 

phase gradients exhibited by these fields. Several typographical errors were also discovered in this 

earlier memorandum. A brief discussion of power flow in terms of the total electromagnetic field 

and the constituent geometric optics and diffraction fields seemed desirable. These considerations 

motivated the writing of the second technical memorandum. 
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PLANE-WAVE SOURCES 

The equations given below are found in TM-84996 together with the author’s statement that (a) 

is an azimuthal variation in the equatorial plane, and ( P )  is a polar variation emanating from the 

(X,Y)  plane. 

E-plane polarization 

(1) 

(2) 

-iks - 
Ei = ( -cosasinp, - sina sin& cosp) e 

Hi = (-sina, cos& 0) e -iks - 

H-plane polarization 
- 
~i = (sin a, -cos a, 0) e-iks 

~i = (-cosa sinp, -sina sinb, cosp) e-iks 
- 

(3) 

(4) 

Figure 1 shows the similarity between the angle variables of Born and Wolf and the conventional 

spherical angles ( Os, cp J. Figure 2 shows several plane-wave incidence angles and field components 

for selected polarization states. Figure 2(a) is relatively easy to  visualize, since the angle a is held 

constant at n/2 radians. Figure 2(b) is considerably more difficult to  visualize since a is specified 

simply as greater than ?r/2 radians. The time-average Poynting vector is identical for both polar- 

ization cases. A means of specifying a general polarization state (elliptical) for the incident plane 

wave is implicit in the preceding and requires only the annexation of an exponential factor for rela- 

tive phase between the E-plane and H-plane cases given above, and scalar weight factors (w 1 ,a 2) to  

establish the axial ratio. 
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Figure 1. Angle Conventions 
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a = nl2 

a >  
p = nl2 

I 

Gi >= % R e E i  x Gi" 
h A A 

= - % (cos a cosp i + cog sina j + sin@ k)  

H - Plane polarization 

= (sina, -cosa, 0)  

H~ = (-cow sin@, -sina sinp, cosp) e-''' 

oi >= % R e E i  x H i C  A 

- 
- 

:: - -  = -% (cow cos0 i + cog sina 1 + sinp 
C 

Figure 2. Incidence Angles and Field Components 
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REGIONS AND BOUNDARIES 

The planewave source angles ( a ,  B ) determine regions and boundaries about the diffracting edge 

of the half-plane. In the text by Born and Wolf three regions and two boundaries are identified in 

a discussion apparently restricted to a single source angle (ao). Ref. 1, p. 571, Figure 3 of this doc- 

ument illustrates a plane wave PWi(-a, @) incident on a half-plane from a region above the scattering 

edge. The shadow, reflection, and illumination regions are shown together with the shadow and re- 

flection boundaries. 

When applying the asymptotic Sommerfeld field solutions for the three-dimensional case, the ar- 

guments 

and 

must be considered. Ref. 1, p. 572, p. 580. Since 
e 

, G(a) =J.. e ni/4 + i 
2a 

it is helpful, when combining the waveforms of the field solutions for analysis, to associate the sign 

of the argument (a) with particular regions and boundaries. The source angles a , @ determine the 

shadow, reflection, and illumination regions designated SR, RR, IR, respectively, and the shadow 

and reflection boundaries SB, RB. The angle 8 of the cylindrical triad (@, z) of observer 

nates determines the sign of arguments p and 4 once a has been. selected. 

Following a two dimensional analysis, Ref. 1, p. 572 : 

and 
e =  n+u0 *.SB 

e = n-uo  * RB 

Returning to the three-dimensional case, and substituting the values of 0, above, 

where 
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I x  
Figure 3. Regions and Boundaries. 
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e= o 
a= 0 

Figure 4. Signs of Arguments p and q. 
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Further exploration leads to  the construction of a mnemonic device, shown as Figure 4.. The 

transitions in sign for p and q are seen to  occur across boundary lines for which the values of p o r  q 

equal zero. 

An inspection of equations (5) and (6) shows that the signs of p and q are unaffected by the 

value of angle p ; the value of n/2 radians is excluded for Since Figure 4 is a function of 

a alone, but was predicated entirely on equations (10) and (1  1)  of a two dimensional analysis, the 

possible effect of angle B on the defintion of boundaries and regions is re-examined in a direct man- 

ner via a ray trace. The components of a ray representing the incident plane wave are 

here. 

- 
Si = - (cosu cos0 , sim cos@,  sin0 ) 

and the components of the associated reflected ray are 

(14) 

- -  sr = s i  - 2 “p (Si a “p) 

= -(cosa cos P ,  - sina cosP , sinP ) (15) 

where the components of ”p are (0, 1 , 0) for the positive normal to  the half-plane. 

It can now be seen from si and sr that the angle between SB and HP equals that between RB and 

HP and is the arc whose tangent is given by the ratio of the magnitude Sy to  Sx, independent of 

angle P . Figure 4 is therefore valid even when P is varied (- n/2 < P < n /2 ) .  Figures 3 and 4 are 

cross-sections taken orthogonally to the z-axis. Translations of these figures along z, together with 

Si and 3, give the three-dimensional representation. 
- 
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SCATTERING FORMULATION (HALF-PL ANE) 

The asymptotic form of Sommerfeld’s half-plane solution is repeated here for convenience. It 

is noted that TM 84996 contained certain typographical errors which are now corrected. The 

reader’s attention is also directed to the errata section of this memorandum, Appendix. A. 

(E-plane Polarization) 

E, = - H  sin@ Y 

E = H,sin@ Y 

eik(rcosp-zshfi) sha [G(p)+G(q) ]  I -nil4 -e H, = 
&-- 

cO$- si@) cosa [G(p) - G(q)] 
i/4 

. H y = -  
&-- 

t 
H, 0 

(H-plane Polarization) 

t cos a12 sin 012 
kr cos p 
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cosa [G(p) + G ( d l  
-nil4 -e ,ik(r cos p - z sin 0 ) Ey = 

&-- 

E, 0 

H, = Eysinp 

Hy = -E, sin0 

Note: 

The circled signs preceding the imaginary terms of equations (23) and (241, above, were obtained 

in a derivationof TM-84996 and are different from 

Ref. 1 ,2nd ed. (-i), (4) 

Ref. 1 ,6 th  Ed. (-i), (+i) , 
respectively. Discussion of this issue is deferred until after the E-plane polarization case has been 

treated in detail. 

An inspection of the Sommerfeld asymptotic solution shows that the total field is comprised of 

plane wave and cylindrical wave constituents. The time-average Poynting vector will be predicated 

on the total electric and magnetic fields, respecting amplitude, phase, and polarization. The con- 

stituents themselves have interesting properties with regard to  divergence, phase gradient, direction 

of propagation, singularities, etc., and are examined before composition of the general Poynting 

vector predicated on total fields. 
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E-PLANE POLARIZATION (a= ~ / 2 ,  fl= 0) 

The E-plane asymptotic solution is considered for a special case of normal incidence (a = H /2, 

f3 = 0) with the observer initially at 

(r,Q) = (r,n,O) 

under the assumption that 

krcosj3= kr> > 1 . 

Figure 5 shows that the field point Lies in the illumination region IR and, using Figure 4, p< 0. q > 0 

is anticipated and verified: 

(31) 

(32) 

a = p = -(2kr cosfl)% COS -?4( e-a ) = -(2krjh&/2 = -(krfh < 0. 

a = q = -(2kr cos8)% cos!4(8 +a ) = (2kr)’&/2 (kr)% > 0. 

Using the preceding arguments in equations (7) and (8), 
1 

c(p) +@/4 e - k  - - 9 

2 ( h P  

and 

(33) 

The geometric optics and diffraction fields may now be identified for equations (1 7) through 

e+ i/4 ,ikr 
E z = * - i -  - &- (krjh 

(35) 

(36) H = - I  X 

e -n i /4  eikr 
(37) 

E = E  = H  = O .  (38) X Y Z 
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Figure 5 .  Geometric Optics and Diffraction Fields (E-Plane Polarization) 
a =n/2 ,  p = O ,  8 =  IT 
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The time-average Poynting vector, using the total fields, is 

< F > =  % Re ExH*= % Re G E  H * - E H *) +?(EZHx* - E,&*) +$ ( E ~ H ~ *  - E ~ H ~ * ) ]  (39) 

which reduces to  

Y Z  Z Y  

h h < > = %Re [ - i E,Hy* + j EZHx*] = < FD(r-'l) > + < Fo(ro) >+ < Fc(r-1/2) > 

and is illustrated in Figure 5. 

When the observer position is 

(r, 8 7  2) = (r7 7n/47 0) (41) 

the field point lies in the shadow region SR and, using Figure 4,p > 0, q > 0 is anticipated and veri- 

ified : 

a = p = 4 2 k r  cospfhcOs%(e -a) = -(2krfhcos 5 n/8 = .383(2krjh > 0, (42) 

a = q = -(2kr co$fh cos%(O+a) = -(2krfh cos 9n/8 = .924(2krjh > 0 . (43 1 

Here 

and 

1.31 i 
G(P) =- 

(2 kr)% 

S41. i  
G(q) = - 

(2kr)% 

543 i e-ni /4  ,ikr 

&- (kr)% 
E, = 

(44) 

(45) 

(46) 
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E , =  E = H , = O .  Y 

The Poynting vector reduces to 

h < Ti > = '/2 Re [ - i EZHy* +'; EZHx* ] = < FD(r-')> + < Ti,(ro) > + < Fc(r-') > 

(49) 

with a small roundoff error, and is illustrated in Figure 6. 

When the observer position is 

the field point lies in the reflection region RR and, using Figure 4, p < 0, q< 0 is anticipated and ver- 

ified : 

a = p = -(2kr cosp )" cos%(e -a ) = - .924 ( 2 k 1 - j ~  < 0 

a = q = -(2kr cosp )1' cos%(O + a )  = -.383 (2kr)% < 0 

> 

Here 

~ ( ~ 1  = f i e n i / 4  ,-1.7 lkr  i - .383 i 

(kr)% 

nil4 e- .293kr i - .923 i 

(kr)% 
G(q) =*e 

(54) 

( 5 5 )  

and 

540 i 

(kr jh 
,ni/4 (e-1.71kr i - e- .293kr i) + L 

-n i/4 e E, = - ,ikr 

6 

-e i k r b p  i/4 (e- 1.7 1 kr i + e- .293kr i) - L 383 i H, = e &- (kr)% 

14 
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Geometric Optics Field (Null) 

Diffraction Field 

Figure 6. Geometric Optics and Diffraction Fields (E-Plane Polarization) 
a =n12, p=o, e= 7al4 
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E x = E  Y = H z = O .  (59 )  

The Poynting vector reduces to  

r 1 

< F> = ?h Re - i EZHy* +~E,H,* J = <FD(r-l) > + <Po(ro) > + < Fc(r-”) > L A  
n kr nkr 

and is illustrated in Figure 7 

Equation (60) requires some discussion. In Figures 5 ,  6, 7 the diffracted fields and geometric 

optics fields are indicated. The accompanying Poynting vectors <Yo > and < pD> may be associ- 

ated with zero, one, or two geometric optics plane waves, and the diffracted cylindrical wave, re- 

spectively. In the IR of Figure 5 both <TD > and < Fo > are non-vanishing. In the SR of Figure 6 

the < FD > is non-vanishing, but the < Po > equals zero. In the RR of Figure 7 an examination of 

the Poynting vector < Po > that incorporates the total electric and magnetic fields shows that 

power-density at a point diverges (vacuously) as ro, and also as r-l and r-” . 
- 

The vanishing of the < Po > term for Figure 7 is apparent from two considerations. Equations 

(56) and (57) show that the geometric optics field in the RR is due to an incident and a reflected 

plane wave. Considering the < F0 > of these oppositely directed waves ( a = n /2, p =  0), the net 

power flow should be zero. An alternative approach is available via the definition of the time-average 

Poynting vector: 
- -  c 

<Po > = Yz Re E, x Hx* = 0 

since 

* I  
is purely imaginary. The factors e-  ni/4 , - e- i/4, eikr are taken into account. 

Equations (54) and ( 5 5 )  may be rewritten to  display the geometric optics fields more clearly by 

writing 

(63) p2 = 2kr cos0 cos 2 ?4( 0 -a ) = kr cosa [ 1 + cos(6 --a )I l 

and 

16 



PWi( a= n12, B= 0 )  I \ z  

e =a14 

R R  
HP 

Geometric Optics Field 
X 

Figure 7. Geometric Optics and Diffraction Fields (E-Plane Polarization) 
a =n/2 ,  B =  0, 8 = n l 4  
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q2 = 2krcospcos2%(8 + - a )  = krcosp [ l  + c o s ( 0  + - a ) ] .  

Then, in the expressions for G(p) and G(q), 

,-ia2 = ,-ip2 = ,ikr c o g  e-ikr cos0 cos( 0 --a ) 

- 2  and 
,-ia 2 -  = e iq = -ikr cos0 e-ikrcosOcos(O+-a) e 

In Figure 7, 0 equals zero, and the incident and reflected plane waves are identified. See Ref. 1, 

p. 572. Only the incident plane wave components are illustrated since the reflected plane wave 

components are similar except for phase factors. The electric and magnetic boundary conditions 

are seen to  be satisfied here for 8 equals 77/4 radians and r equals zero and, more generally, along 

the half plane for 0 equals zero and any value of r for both E-plane and H-plane solutions. 

The < P,(r-') > term of equation (60) evolves via the cylindrical electric field term of equa- 

tion (56) and the cylindrical magnetic field terms of equations (57) and (58). For the parameters 

of the present example it happens that the i and j components of <PD> are equal, and the di- 

rection of the power-density vector is orthogonal to  the cylindrical wavefront as shown in Figure 7.  

The < F&--H) > term of equation (60) is a result of two cross-products, equations (56) and 

(57), leading to  a (r-%) law of power divergence unlike that of geometric optics (ro) or  diffraction 

(r-'). In Figure 7 the complicated power-flow in the SR must be due to  the < pc > term since 

< Fo > equals zero, and < FD > is a simple power term associated with a cylindrical wave. (Ref. 1, 

pp.576, 577, maps H-plane polarization fields and power flow.) It is noted that both Hx* and Hy*, 

interacting with E,, give rise to  cross terms that diverge as (r-'), but the operation (?h Re) must 

be taken into account. 

A A 

When the observer position is 

(r,e 3 z) = (r, 377 /2, z) (67) 

the field point lies on the shadow boundary SB and, using Figure 4, p = 0, q > 0 is anticipated and 

verified: 

a = p = -(2kr C O S P $ ~  cos% ( 8  - - a )  = 0 

a = q = 4 2 k r  cos0 jh cos% (8  + a)?? = (2krjh > 0 . 

(68) 

(6% 
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Here 

and 

H~ - e*i'4eikr[ - ] 
2 / 2 ( k r t h  

E , = E  = H , = O .  Y 

The Poynting vector reduces to 

<P >= '/z Re [ -?EZHy* +yE,Hx*l = <PD(r-') > + <Fo(ro) > + <?C(r-%)> 

c e e 
- 1  1 J =.[-----I 4rkr  Onkr 4 + < F&r-'/z)> 

(74) 

(75) 

and is illustrated in Figure 8. 

The diffracted Poynting vector < > is no longer orthogonal to  the cylindrical wavefront for 

the present evaluation on the SB even though the exact form of G(p), equation (70), was used. 

See Ref. 1, p. 571, p. 573. It appears that the Fresnel integral approach should be employed here. 

Additional insight is provided by studying the behavior of the asymptotic solution as 0 approaches 

the SB from the IR. (See Figures 9 and 10 and subsequent discussion .) 

D 

Although the asymptotic solution leads to a doubtful result on the SB regarding the diffracted 

wave, the geometrical optics result is reliable. From equation (72), 

E,(ro) = '/2 eikr (77) 
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<Po > 

Geometric Optics Field 

/ \ 
r: 

PWi( a = n12, p= 0 )  

Diffraction Field 

Figure 8. Geometric Optics and Diffraction Fields (E-Plane Polarization) 
a = n12, P = 0, e =  3n/2 
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which is the arithmetic mean of values on either side of the shadow boundary: 

ikrcosg cos(8-a) + 0 ) A.M. = 4i ( e -  
IR SR 

Here the values of a$ and 8 are 1~ /2 ,0 ,  and 3n/2, respectively. 

When the observer position is 

the field point lies in the illumination region IR and, using Figure 4, p < 0, q X is anticipated and 

verified : 

(80) a = p = -(2kr cos6fh cos%( 8 -0 ) = - .383(2krih < 0 

(81) a = q = 4 2 k r  CO@) % cos%(8 +a ) = .924(2krfh > 0 . 

Here 

and 

qP) = p e r i / 4  e- -293 kr i - -923 i 

(krfh 

e-ni/4 
E, = - e i k r [ ~ e 7 r i / 4  e- .293 kr i - 

6 

“I - i/4 eikr[+e~i/4 ,-.293 kri - 
H, = 

Jlr 

(84) 

E = E  = E  = O .  
X Y Z  
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The Poynting vector reduces to  

<P> = % Re [ -?EZHy* +)EZHx*l = <&(r-l) >+ <Fo(ro) >+ <Tc(r-%) > 

and is illustrated in Figure 9. 

(89) (r ,e.  z) = (r, 1 ln/8, z) 

the field point lies in the illumination region IR, but close to the shadow boundary SB and using Fig- 

ure 4, p <0, q> 0 is anticipated and verified. 

Here 

and 

a = p = 4 2 k r  COSP) Y2 cos%(8 -a) = -.195 (2kr)% < 0 

a = q =  -(2kr c0~/3)~cos%(B + a )  = .981 (2krfh > 0 . 

~ ( ~ 1  = F e n i / 4  ,-.076 kr i - 1.81 i 

(kr)' 

.360 i 
G(q) = - 

( k r f ?  

E, = - i/4 e ikr [J. ,ni/4 ,-.076 kr i - "1 
6- (kr)' 

- e-ni/4 2.01 i 
ikr [ J. ,nil4 ,-.076 kr i - - H, = e 6- (kr)% 

e-ni/4 ,ikr 
H,, = -..831 i 

J 

(kr)' 

(95) 

(96) 

E, = Ey = E, = 0 .  (97) 
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Geometrics Optics Field 

I"' 
X 

Diffraction Field 

Figure 9. Geometric Optics and Diffraction Fields (E-Plane Polarized) 
a = n12, p =  0. 0 = 5d4 
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Thc Poynting vector reduces to  

h h <F> = 9'2 Re[- i EzHy* + j EzH,*] = <TD(r-') > + <Fo(ro) >+ <Fc(r-%) > 

and is illustrated in Figure 10. 

Figures 9 and 10 tend t o  show that the diffracted Poyntingvectoris well-behaved in the IR. Using 
4 

equations (20) and (2 I) ,  and defining an angle t between <PD > and - j ,  

As 8 approaches 3n/2, E approaches zero in a continuous manner using equation (99). This implies 

that the diffracted Poynting vector is everywhere orthogonal to the cylindrical wavefront, con- 

trary to  the conclusion reached using the exact solution for G(0). 

From equation (74) and Figure 8 it can be seen that H does not vanish at the shadow boun- 

dary, but tan vanishes due to the fact that l / p  is unbounded at 8 equals 3n/2 .  I f  this singularity 

is admitted, however, the field quantity H,D is also unbounded, which is an unsatisfactory solution. 

In conclusion, it appears that a region near the SB is to be avoided when working with the asymp- 

totic solution. Ref. 1, p. 57 1. 

YD 

When the observer position is 

(r,O 9 z) = (r,nl2, z) ( 100) 

the fixed point lies on the reflection boundary RB and, using Figure 4, p < 0, (1 = 0 is anticipated 

and verified: 

a = p = 4 2 k r  cos@fh cos%(8 --a ) = -42kr)' 

a = q = -(2kr cos@)' cos%(8 +a ) = 0 

< 0 

Here 
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Wi(a =nR. 8= 0) e = IIXB. IR \ 

Geometric Optics Field I 

Diffraction Field I 

Figure 10. Geometric Optics and Diffraction Fields (E-Plane Polarization) 
a =  1 ~ 2 ,  o=  0, e =  im 
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and 

E , = E  = H , = O  Y 

The Poynting vector reduces to 

- A < P > = % Re [ -  i E,Hy* +?E,H,*] = <TD(r-’)> + s o ( r 0 )  > + < Fc(r-”) > 

and is illustrated in Figure 1 1  

The diffracted Poynting vector < FD> is no longer orthogonal to  the cylindrical wave front for 

the present evaluation on the RB. even though the exact form of G(q), equation (104), was used. 

Comments similar to those made for the SB are applicable here. 

Although the asymptotic solution leads to a doubtful result on the RB regarding the diffracted 

wave, the geometrical optics result is once again reliable. From equation (105), 

(1 10) E,(rO) = e-ikr - s e i k r  
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Geometric Optics Field 

0 

HP 
Diffraction Field 

= 0) 

Figure 1 1 .  Geometric Optics and Diffraction Fields (E-Plane Polarization) 
a = ~ 1 2 ,  p =  0, 8 =r12 
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which is the arithmetic mean of values on either side of the reflection boundary: 

-ikr cosl3cos(O -a) - ,-ikrcosl3cos(O +a)+ e-ikr cospcos( e -  a)) . 
RR RR IR 

A . M . = %  (e 

( 1 1 1 )  
Here the values of a ,  0, and 8 are n/2,0, and n/2 ,  respectively. 

When the observer position is 

( r , e ,  z) = (r, 0, z) ( 1  12) 

the field point lies on the half-plane and, using Figure 4, p < 0, q < 0 is anticipated and verified: 

a = p = -(2kr cos 0)' cos'/z(8 --a ) = - (kr)' < 0 (1 13) 

a = q = -(2kr cosp)' cos%( O + a )  = - (kr)% < 0 (1  14) 

Here 

and 

The Poynting vector reduces to 

h - 
< P >  = % R e [ - i E  Z Y  H * +TE,H,*] = 0 . ( 120) 



The preceding solutions indicate that there is no diffracted field component along the half-plane, 

and reiterate the boundary conditions regarding tangential geometric optics fields. Since H,(ro) 

alone is different from zero the total Poynting vector for 8 equal to zero vanishes. 
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H-PLANE POLARIZATION (U = n/2,P= 0) 

The H-plane asymptotic solution is considered for a special, case of normal incidence ( a  = n/2, 

P = 0) with the observer initially at 

(r, 8 ,  z) = (r, n, 0) 

under the assumption that 

krcosb = kr > > I  (1 22) 

Obviously, the field point lies in the illumination region IR a m ,  using Figure 4, p <0, q>  0 is an- 

ticipated and verified: 

Using the preceding arguments in equations (7) and (8), 

and 

The geometric optics and diffraction fields may now be identified for equations (23) through (28). 

H, = 1 (128) 

Ey = E, = H, = Hy = 0 

The time-average Poynting vector, using the total fields, reduces to  



A null in the diffraction field is indicated. More importantly, the @ sign of equation (1  27) 

appears to be correct since the opposite sign would lead to a diffracted (cylindrical) component 

E, without a magnetic counterpart. This result is not taken as conclusive, however, since the dif- 

fracted Poynting vector vanished in the present example. 

When the observer position is 

(r, 8 , ~ )  = (r, 5 d 4 ,  z) (131) 
the field point lies in the illumination region, and using Figure 4,  p <0, q > 0 is anticipated and veri- 

fied : 

a = p = -(2krcosp)1/2cos%(e-a) =-.541(krfh < 0 ( 1  32) 

(133) a = q = 4 2 k r  cosp fh COS%( 8+ a)  = 1.31(krjh > 0 

Here 
.924 i m i/4 e- -293 kri - - 
(kr jh 

G(P) =&e 

.383 i 
G(q) = - 

(kr)' 
and 

136) 

e-ni/4 .541 i ,ikr [.; eni /4  e-  .293 kri - 

J11 (krf' 
H , =  - (138) 
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The Paynting vector reduces to  

h <P> = % Re [ ?  EyH,* - j ExHZ* J = <TD(r-') > + < Fo(ro) > +<pc (r-%) > 
h 

-.206? .207j  
( 140) 

n kr n kr 
= %  

and is illustrated in Figure 12. 

Figure 12 shows that the diffracted Poynting vector < FD > is orthogonal to  the cylindrical wave- 

front in the selected point of the IR using the @ sign for both equations (23) and (24). This re- 

inforces the indication of the previous example for 8 equals n radians, and the derivation of TM 

84996. The consequences of using the 0 sign for both equations, Ref. 1, 2nd Edition, are given 

below, and are illustrated in Figure 13. Similarly, the consequences of using the 0 sign for equa- 

tion (23) and the @ sign for equation (24), Ref. l ,  6th Edition, are given below, and are illustrated 

in Figure 14. It can be seen that the diffracted Poynting vector < PD > is not orthogonal t o  the 

wavefront for a point, 8 equals 5n /4  radians, deep in the illumination region IR for the latter two 

examples. The @ sign will therefore be applied to  equations (22) and (23) of TM 84996 and 

equations (23) and (24) of TM 86221 as indicated. 
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f PWi(U = ld2, j¶ = 0) 

Geometric Optics Field I 

Ex ET 

PWi( a = nl2, B; 0)  

A - b 

Y 

Diffraction Field 

Figure 12. Geometric Optics and Diffraction Fields (H-Plane Polarization) 
a = nl2, p =  0, 8 = %I4 
Signs: @ , @ ofTM84996 
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PWi(a =11/2,0 = 0) \ 

E X  

r / 

V 
Geometric Optics Field 

-e 

HP 

X 

g = 5d4, I R  

PWi(a=?r/2, p =  0) 

Diffraction Field 

Figure 13. Geometric Optics and Diffraction Fields (H-Plane Polarization) 
a = n/2, p = O ,  9 = 5 d 4  

Signs: 0 , 0 of Ref. 1,2nd Edition 
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<Tio > 

HP 

Pwi( a = n/2, 8= 0)  

Geometric Optics Field 
HP 

X 

Diffraction Field 



Ref. 1, 2nd Edition signs: 

--n i/4 e H, = - ikr e 
J. 

2141 i 1 
nil4 e- .293 kri - - 

(kr)l/" 
f i e  

E , = H , = H y = O  . ( 144) 

The Poynting vector reduces to 

A 

< ? > = % R e  [ 7 EyHZ* - j E,H,*] = <f;,('-')> +<'i;,(rO)>+<&(r-')> 

1.21 7 - - ;] + < pC (r-s) > .207 ? 
=1/2 - -  [ nkr  n kr  

and is illustrated in Figure 13. 
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Ref. 1,6th Edition signs: 

e-mi/4 
Ex = - e* [.; ~ i / 4  e- -293 kri 

JI 

- - e  e-iri/4 fi ,r i/4 e- -293 kri - - 

.924 i 
- - -  

(Id% 

2.231 i -1 ( k r P  

E = H  = H  = O  . 
Z X Y 

The Poynting vector reduces to 

- 2.07 ? 1.21 71 
n k r  r k r  

= % [  - 

and is illustrated in Figure 14. 
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E-PLANE POLARIZATION ( u = n/2,P # 0) 

The E-plane asymptotic solution is considered for a special set of cases of oblique incidence 

( a =  n/2, P e 0) with the observer at 

under the assumption that 

(1  52) 

Figure 15 shows that the field point lies in the illumination region IR and, using Figure 4, p < 0, 

q > 0 is anticipated and verified: 

krcos0 >> 1 . 

a = p = 4 2 k r  cosp)" cos%(8 - a )  = - (kr cos0 ) % 

a = q = 4 2 k r  c o g  )% cos%( 6 +a ) = (kr cos0 fh . 
Using the preceding arguments in equations (7) and (8), 

1 ~ ( ~ 1  = J. eni/4 e-ikr COSP - 
2(kr COSP)' 

and 

The geometric optics and diffraction fields may now be identified for equations (17) through 

(22).  

H , = - e  -ikz si@ 

-i e- ni/4 ,ik(rcos - z sin fi ) 
H y =  - 
6 (kr cosP )" 
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\ /  Y 

Z 

..\-. - .., - 

al2.8 # 0 )  
. .  

Diffraction Field 

Figure 15. Geometric Optics and Diffraction Fields (E-Plane Polarized) 
a = n / 2 , p $ .  0. O = n  

39 



E Y = H, sin0 

H z = O .  

The time average Poynting vector, using the total fields, is 

- 

which reduces to 

A h A - 
< P >  = % R e [  - iEZHy*+jEZH,*+k(E  X Y  H * - E  Y X  H *)] 

J nkrcosP 

subject t o  equation ( 152), and is illustrated in Figure 15. Equation (1  64) degenerates to  equation 

(40) under equals zero. 

Equation (164) shows the Poynting vectors < &ro) > amd <P(r-') > associated with the geo- 

metric optics and diffracted fields, respectively, for an incident plane wave with angle a equal to 

/2 radians, and P arbitrary. The diffracted power density <?(r-') > diverges as r-l since the 

electric and magnetic fields diverge as r-'. This indicates a cylindrical wave, regarding the dif- 

fracted fields independently, for which total power is conserved as it passes through concentric 

cones: 

- 
I f i ? ( r - ' ) >  dS = constant 

Here 

/ / h S  = f f d  6 dhs = j[- - - n r h s  
C C 

for a cone of slant height hs and half-angle I ' ,  but it remains to show that 

- 
for the present example when < Pu > is a unit vector. 
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Figure 16 illustrates the separate arguments of an exponential term (phase factor) of the mag- 

netic field of equation (1 59), and the combined argument, about the diffracting edge. Setting this 

phase term equal to a constant, the wavefront A is obtained and the components of the corre- 

sponding normal GA are given by 

- - 
(168) nc - - nA = (cosBcosO,cos6sinO,-sinB) . 

In Figure 16, O equals n radians is illustrated, and 

n h n h - 
(1  69) - 1  < PJr- ) > nc=(-  i cos6 - k sir@ ) (- i cos@ - k sin0 ) = 1 

is established for the present example. 
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Al = kr coSp A2 = kzsinfl 

(b) Argument A2 (r = constant) (a) Argument A1 (r = constant) 

(c) Combined Argument $ 
(r = constant) 

(d) Wavefront A 
( $= constant) 

Figure 16. Evolution of the Cylindrical Wavefront for Oblique Incidence 
a = n / 2 ,  p +  0, e=  IT 
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DIFFRACTING HALF-PLANES OF FINITE LENGTH 

In TM 84996 the classical solution for scattering from a half-plane was proposed for dealing with 

fences of finite length to determine the perturbation on the effective radiation pattern of parabo- 

loidal antennas. Aside from possible multiple interaction between members of a polygonal fence, 

the application of the half-plane solution for even a single fence may be inappropriate for other 

reasons. An examination of the geometrical parameters of a proposed security fence installation 

at the Merritt Island, FL Spacecraft Tracking and Data Network Station showed that lengths of 

60,70, 130, and 140 feet would be encountered. The distances R to  the shortest and longest fences 

are approximately 64 and 56 feet, respectively, from the center of the antenna base. 

An attempt is now made to  determine whether or not the assumption of the fields scattered from 

an infinitely-long conducting half-plane is reasonably valid for the 60 and 140 foot fences at S and 

Ku band. From Figure 17 it can be seen that, for a fence of f inte  length L, there is a fraction B 
of its length which appears phase-stationary in some sense as seen from a point of observation. 

The pad center is arbitrarily selected as that point here, and the criterion of stationarity is taken 

to  be a numeric N (equal to  6/A). 

(R + 6 ) 2  = R2 + (Q/2)2 (170) 

If phase quadrature is taken as the criterion N equals one-fourth, the regions of the fence which a p  

pear stationary in the present context may be calculated at S-band ( A = 1/2 ft.) and Ku-band 

( A =  111 2 ft.) for the fence lenghts L and associated distances R. The results are given in Figure 17. 

An interpretation of the results is that a fraction !?/L of a finite fence may be stationary, but that 

ratio is equal to zero for an infinite fence which gives rise to  cylindrical wave. The greater the ratio 

of J? /L, therefore, the weaker the justification for the present half-plane analysis. Alternatively, for 

a finite fence there exists some distance R, sufficiently large, so that the entire fence is essentially 

stationary and the radiation observed no longer diverges as a cylindrical wave, but like that of a 

point source or spherical wave. The quadrature stationarity criterion 
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L/2 912 0 Fence 

L 
Q = 8.0 feet (S-Band) 
Q = 3.3 feet (Ku-Band) 

= 60 feet, R = 64 feet, N = 114 

L 
9 = 11.8 feet (S-Band) 
9 = 4.8 feet (Ku-Band) 

= 140 feet, R = 56 feet, N = 1/4 

Figure 17. Stationary Sectors of Finite-Length Fences 
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used to obtain Figure 17 regards a very weak stationarity and should be compared to  the criterion 

N = 1/16 (1  73) 

that is applied in the manufacture of paraboloidal reflectors of ordinary industrial quality. 

The half-plane analysis discussed in this technical memorandum will not be applicable to  repre- 

sent the physical installation at Memtt Island, FL at Ku-band. There is no problem regarding sta- 

tionarity and, as shown by Figure 17, a Ku-band simulation is easier to justify than one at S-band 

for the fence lengths and observer distances noted. The difficulty lies with the mesh size of the 

fences. At S-band the approximately 2.5 x 2.5-inch mesh appears to be an essentially continuous, 

perfectly conducting half-plane segment. At Ku-band the same mesh appears to be a doubly peri- 

odic structure or filter with a calculable transmission and reflection coefficient that depends, in 

general, on  the angle of incidence and polarization orientation. 
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CONCLUSION 

In this technical memorandum, a sequel t o  TM 84996, the propagation mechanics of the diffract- 

ing half-plane have been explored using an asymptotic solution. Certain sign discrepancies in the 

field equations were resolved by an independent derivation of those equations and a graphical exam- 

ination of the diffracted fields and the associated time-average Poynting vectors. The asymptotic 

solution was applied for points of observation in the shadow, illumination, and reflection regions 

according to  ascending complexity, and geometric optics fields were separated from the diffraction 

fields. A similar application of the asymptotic solution was made on the shadow and reflection 

boundaries, anticipating some difficulties. It was found that the geometric optics solutions were 

reliable, and the transition across these boundaries lead to  the recovery of the arithmetic mean for 

the field quantities. The diffracted fields on these boundaries are deemed to  be unreliable, leading 

to  Poynting vectors that are not orthogonal to  a cylindrical wavefront. 

The case of general incidence ( a, 0) was explored in order to answer questions concerning singu- 

larities triggered by the cos0 term and the shape of the diffracted-field wavefront. The time-average 

Poynting vector was separated according to the divergence (r-', ro, r-') that resulted from con- 

sidering the total magnetic and electric field quantities of the asymptotic solution. These diverged 

as (ro, r-%), and gave rise to cross-product terms in the development of the Poynting vectors. It 

was found that the diffracted wavefront is a conical cylinder for general incidence, and degenerates 

to  right-circular cylinder for orthogonal incidence. Further, the law of divergence for the diffracted 

wave taken independently is compatible with the area of concentric conical wavefronts in the sense 

that energy conservation is preserved. 

Returning to  the more immediate concern, the diffraction fences at Merritt Island, FL, it was 

concluded that the formulation involving the Fresnel integrals could be by-passed since the per- 

turbation from a fence resides entirely in the diffracted magnetic fields of the Sommerfeld asymp- 

totic solution for the fence geometry presented at this time. An exploration of the phase station- 

arity at S and Ku-bands disclosed that the Sommerfeld solution would not be applicable if the 

fences were significantly further from the paraboloidal antenna base. (In any event, modal analysis 

will be required at Ku-band due to the doubly-periodic mesh of the fence.) It is unlikely that 

fences would ever be in such close proximity to  the antenna as to  require Fresnel integration, and 

also unlikely that the reflection region would have to be considered. Present plans include the map- 

ping of those convoluted fields for large distances from the diffracting half-plane edge. 
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APPENDIX A 

ERRATA TO TM 84996 

The following errors have been detected. 

Page 6, equation ( 16) 

Replace cos 8 /2 with sin 8/2 

Page 7, equation (27) 

Multiply the right-hand side of (27) by cos 0 

Page 8, one line above equation (29) 

Replace “same” with “some” 

Page 17, two lines above equation (62) 

Replace “respec” with “respect” 

Page A-1 , one line below equation (1-A) 

Multiply the right-hand side of the equation for C by e- 

equation for E. 

Page B-2, below equation (1 0-B) 

Replace p. 76 with p. 573 . 

ik si‘@, and delete i in the 

. 
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